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Summary. An experimentalist approaching theory for an understanding of conceptual chemistry that

can be related to measurable properties, focuses on the electron density distribution. One finds in the

topology of the electron density the definition of an atom, of the bonding between atoms, and of the

boundary condition for the extension of quantum mechanics to an open system – to an atom in a

molecule. This paper describes this approach, as it evolved from the failure of existing models to a

study of molecular charge distributions and of how these studies resulted in the extension of quantum

mechanics to an open system using the action principle.
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Introduction

Conceptual Chemistry

Science is observation, experiment, and theory. This is the path that led to the
development of the molecular structure hypothesis – that a molecule is a collection
of atoms with characteristic properties linked by a network of bonds that impart a
structure – a concept forged in the crucible of nineteenth century experimental
chemistry. One hundred and fifty years of experimental chemistry underlie the
realization that the properties of some total system are the sum of its atomic
contributions. The concept of a functional group, consisting of a single atom or
a linked set of atoms, with characteristic additive properties forms the cornerstone
of chemical thinking of both molecules and crystals and Dalton’s atomic hypoth-
esis has emerged as the operational theory of chemistry. We recognize the presence
of a functional group in a given system and predict its effect upon the static,
reactive, and spectroscopic properties of the system in terms of the characteristic
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properties assigned to that group. When one enters the laboratory to make a mea-
surement on a system, this is the conceptual model underlying the planning and
the design of the experiment. It certainly was paramount in my mind when, as a
student, I was presented with an ‘unknown’ upon entering the qualitative organic
laboratory (in the days before infrared and NMR spectroscopy). We shall refer to
this approach as ‘conceptual chemistry’ and the purpose of this account is to
demonstrate that it has a basis in physics.

One might have hoped that with the advent of quantum mechanics in the 1920s,
the linking of experimental chemistry to theory would have been both extended and
strengthened. This certainly occurred in the field of spectroscopy where molecular
orbital (MO) theory, as developed in the early papers of Mulliken [1–3] and Hund
[4], provided a prediction, ordering and classification of many-electron states in
terms of the component one-electron states. This theory provided the link with
experimental spectroscopy, as admirably illustrated by the work of Herzberg [5].
It is the theory that one employs to predict the electronic structure of molecular
systems. Thanks in large to Roothaan [6], MO theory, both Hartree-Fock and
beyond, and the derivative Kohn-Sham [7] self-consistent orbital approach with
HF exchange, are the procedures that are presently used to obtain approximate
wave functions for the prediction of expectation values for an atom, molecule, or
crystal. The eminently useful and predictive models that come from MO theory, the
crystal field=ligand field descriptions of electronic structures of metal complexes
and H€uuckel’s 4nþ 2 rule of aromaticity, for example, exemplify the proper use of
MO theory – the prediction of a molecule’s electronic structure by the successive
occupation of the orbitals. Orbital ordering forms the basis for the application of
the ‘second-order Jahn-Teller’ symmetry rule [8] that underlies Fukui’s frontier
orbital theory [9].

Impact of Quantum Mechanics on Conceptual Chemistry

Unfortunately this linking of quantum mechanics with experiment did not extend
to the basic concepts essential to the molecular structure hypothesis – of atoms
with characteristic and additive properties and of the bonding underlying molecular
structure. Indeed one can find numerous literature statements to the contrary: ‘that
while the concepts of atoms and structure are undeniably useful if not essential to
chemistry, they are not recoverable from quantum mechanics’ and the link between
experiment and conceptual theory was not established. Such statements come at the
end of arbitrary or failed attempts to define the elements of conceptual chemistry
using either valence bond or molecular orbital theory and are frequently expressed
in terms of the ‘atomic orbital’ basis functions used in their expansion. This is
an acknowledged failure of the orbital approach. Libit and Hoffmann [10], for
example, after stressing the logic of substituent effects that made possible the
great strides in synthetic and mechanistic organic and inorganic chemistry state:
‘‘Nothing like this logic comes out of molecular orbital calculations. Every mole-
cule is treated as a whole and no set of transferable properties associated with a
functional group emerges.’’ Not only are the properties of functional groups known
experimentally to be characteristic, the properties can in some instances appear to
exhibit perfect transferability [11], giving rise to the existence of experimental
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additivity schemes. These schemes were early on documented for molar volumes,
heats of formation, magnetic and electric susceptibilities, as well as for thermo-
dynamic properties. An experimental chemist knows that the conceptual frame-
work of chemistry is so deeply rooted in experiment that it must be encompassed
and predicted by physics. One must only decide where to look.

The solution to the problem requires first that one abandons orbital and Hilbert
space in the search for conceptual chemistry. Atoms and structure exist in real
space – the space of observation and measurement. Wave functions and orbitals
on the other hand, are mathematical functions expressed in terms of a linear super-
position of elements in the abstract Hilbert space, a dual vector space of infinite
dimension. From the time of the classic paper on the hydrogen molecule by Heitler
and London [12], interpretive chemistry has been steeped in the language of wave
functions and orbitals, an approach that necessarily precludes establishing any
connection to atoms and structure that occur in real space. Much of present day
interpretive chemistry employs individual orbitals and=or the atomic centred basis
functions used in their expansion, as the basis for subjective and arbitrary defini-
tions of atoms and their properties, as exemplified by the many definitions of an
atomic charge to be found in the chemical literature. An atomic charge is in fact,
a uniquely defined expectation value of a quantum mechanical observable [13].
The knowledge that measurable properties are invariant to a unitary transformation
of the orbitals has not impeded the use of particular sets of orbitals, such as lo-
calized orbitals, to model bonded and nonbonded pairs of electrons, concepts that
Lennard-Jones demonstrated are determined by the quantum mechanical pair den-
sity [14]. When the orbital approach is used in an attempt to answer a chemical
question, there can be as many different answers as there are attempts, in line with
the philosophy espoused by Hoffmann in the statement ‘‘accept that a bond will be
a bond by some criteria, maybe not by others’’ that appears in the abstract to his
talk presented at the 2004 ACS meeting in New York. An experimentalist does not
choose the result he favours from a set of observations, nor should he be asked to
choose between alternative often competing explanations concerning conceptual
chemistry. If a question can be couched in the language of physics, it will have a
unique answer if one uses quantum mechanics, rather than orbitals. We neither
anticipate nor accept different answers for expectation values that are predicted by
quantum mechanics for the total system. Energy is the expectation value of the
Hamiltonian operator and, for a given level of theory, this value is unique. What is
required is a quantum mechanics of an atom in a molecule [15, 16]. Such a theory
would enable one to obtain correspondingly unique answers to chemical questions
by translating them into the language of physics.

Schrödinger’s Advice on How to Apply Quantum Mechanics

In 1926 Schrödinger published a series of four papers on ‘Quantisation as an
Eigenvalue Problem’, paper I presenting his derivation of the ‘wave equation’
[17], paper IV providing the definition of the electron density, the current density,
and the equation of continuity that relates them [18]. It is in this paper that he
comes to grips (in Section 7) with the significance of the ‘field scalar’ C and it
makes for fascinating reading as he grapples with the knowledge that C can be
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imaginary. He concludes that earlier musings of ‘C-vibrations’ as something real
are false and that the quantity of physical interest is instead C�C, or the corre-
sponding quantity for a many-particle system that he obtains by an integration over
the coordinates of all the N electrons but one, the manner in which one presently
defines the electron density �(r), Eq. (1).

�ðrÞ ¼ N

ð
dr0C�C ð1Þ

The symbol
Ð

dr0 denotes a summation over all spins and an integration over all
electronic coordinates save those denoting the position r, a mode of integrations
that appears throughout the theory to be presented here. Schrödinger goes to con-
siderable lengths to distance himself from any attempts to use C in a way other
than to obtain C�C. He concludes by emphasizing the non-physical nature of the
C-function and with the hope and belief that the electronic charge and current
densities, �(r) and j(r) respectively, will prove useful in the understanding of the
magnetic and electrical properties of matter, a belief that foreshadowed the devel-
opment of the quantum mechanics of an atom in a molecule [19]. Indeed, the very
first derivation of the physics of an open system for a stationary state was obtained
by generalizing Schrödinger’s derivation of his wave equation as given in paper I to
a system with a finite spatial boundary, a generalization shown to be possible only
if the boundary satisfied a particular topological condition stated in terms of the
density [20].

The densities, �(r) and j(r), are real measurable fields, the former describing
the distribution of negative charge throughout space, the latter describing its tem-
poral evolution or its flow in the presence of a magnetic field. Schrödinger also
introduced the quantum stress tensor r(r) and it along with �(r) and j(r), are the
three quantities that determine the definition and the mechanics of an atom in a
molecule. These three fields form the basis for the theory that will link the atomic
concept to quantum mechanics. The reader is asked to anticipate and watch for
their appearance as the physics of an atom in a molecule unfolds.

An Interlude on the Principle of Least Action

In line with the philosophy espoused in the opening sentence of this treatise, the
search for a theory of an atom in a molecule necessarily begins with observation in
answer to the question: ‘What physical property of a system reflects the elements
of conceptual chemistry?’ One’s search for the answer to this question leads to a
most fundamental principle of physics – the principle of least action – first enun-
ciated somewhat imperfectly by Maupertuis in 1744, stated in its present form by
Hamilton in 1834, and most recently used by Feynman and Schwinger in 1948 and
1951, respectively, as the starting point of their fundamental reformulation of
physics. Feynman’s path integral [21] and Schwinger’s principle of stationary
action [22], the latter being a differential statement of the former, provide formula-
tions of quantum mechanics that are more fundamental than the familiar Hamilto-
nian presentation and most importantly, extend its scope of application.

As a physical organic chemist interested in reaction mechanisms, my knowl-
edge of physics did not include any familiarity with the principle of least action, a
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lack that applies to some theoreticians as well. Feynman’s use of the principle in his
path integral approach to quantum mechanics is familiar to some in the field of
dynamics, but Schwinger’s statement of the principle of stationary action appears
to be known to a rather select audience of theoretical physicists – those whose area
of interest requires the use of field theory in the search for answers to questions
ranging from the structure of the nucleus internal to the atom, to the quarks and
gluons internal to the nucleons, and ultimately, for very short separations, to mod-
els of the origin of the universe. This lack of familiarity is unfortunate, because the
same principle defines the top of the chain as well; the atom containing the nucleus.
Schwinger’s principle enables one to ask and answer questions that cannot be
formulated within Hamiltonian mechanics, an example being ‘what is at atom in
a molecule?’ The development underlying this statement is given here, together
with an introductory account of Schwinger’s principle that may wet the intellectual
curiosity of the reader. One can surely strive to have some familiarity with the
principles that ‘may provide the real foundation of quantum mechanics and thus
of physical theory’, Gell-Mann’s description [23] of the work of Feynman and
Schwinger.

We begin with a quotation from Richard Feynman [24]. ‘‘When I was in high
school, my physics teacher – whose name was Mr. Bader – called me down one
day after physics class and said. ‘You look bored; I want to tell you something
interesting.’ Then he told me something which I found absolutely fascinating.
Every time the subject comes up, I work on it. . . .The subject is this – the principle
of least action.’’ Mr. Bader threw a piece of chalk in the air and upon catching it,
told Feynman that the trajectory traced out by the chalk in space and time was such
that it corresponded to the unique path, consistent with initial and final conditions,
that minimized a quantity called the action. A simple, profound idea, one that
appears to by-pass the classical equations of motion.

Formally, the principle of least action states that a quantity called the action is
minimized as a system moves from one configuration to another or mathematically,
the action is stationary with respect to variations in the space-time path connecting
the two configurations. Such a path is depicted in Fig. 1 for a classical trajectory

Fig. 1. Schematic representation of the actual path and of a possible varied path obtained by a variation

of the position coordinate q, linking the initial and final space-time points for a classical system
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connecting initial and final points in space; q1 and q2, at the corresponding times t1
and t2. The action, denoted by W12, with the dimensions of h (energy�time) is the
time integral between the limits t1 and t2, of the Lagrangian Lðq; _qq; tÞ, a function of
the coordinates q, their velocities _qq and the time t, Eq. (2).

W12 ¼
ðt2

t1

Lðq; _qq; tÞ dt ð2Þ

The classical Langrangian equals the difference between the kinetic and po-
tential energies, L¼T�V. It has a value at each point on the trajectory and
the ‘sum’ of these values between the two time limits is to be a minimum. This
problem is distinct from finding an extremum in some function at a single point
in space using differential calculus. Determining an extremum of a function
over an entire path is accomplished using the ‘calculus of variations’. Assuming
the existence of the ‘actual path’ that is to be found, one generates a ‘varied
path’ co-terminus in space and time, by displacing q on the actual path by an
amount �q at each time t as depicted in Fig. 1, thereby causing a variation or
first-order change in the action integral, �W12. Since W12 is to be a minimum
for the true path, the variation �W12 must vanish, and the action is said to be
‘stationary’. One of Feynman’s lectures presents a clear and very readable pre-
sentation of the elementary mathematics underlying the derivation of the expres-
sion for �W12 ¼ 0 [24].

The mathematical result of varying the action integral is shown in Eq. (3) for a
single coordinate q.

�W12 ¼
ðt2

t1

fð@L=@qÞ � dð@L=@ _qqÞ=dtg�q dt ¼ 0 ð3Þ

The variations in _qq are re-expressed in terms of �q using an integration by parts
(refer to Feynman’s lecture) and the resulting terms at the time end points are
discarded. Thus, the result of the variation is given by the group of terms enclosed
in the curly brackets in Eq. (3), all multiplied only by �q, the variations in q. Since
�q is arbitrary, the only way in which the variation �W12 can vanish is for the group
of terms in the curly brackets to equal zero, yielding a differential equation. This is
a general result; minimizing the action generates a differential equation, called the
Euler-Lagrange equation that, for the classical action, are Lagrange’s equations
of motion which apply to any generalized set of coordinates. For a single particle
L ¼ m _qq2=2 � VðqÞ and the equations reduce to Newton’s equation of motion, that
the force given by �@V=@q, equals mass times acceleration, m€qq.

If one employs the quantum mechanical Lagrangian, a functional of the state
function, its gradient, and time derivative, LðC;rC; _CC; tÞ, and causes the action to
be stationary with respect to first-order variations in C, one obtains Schrödinger’s
time dependent equation, i�h@C=@t ¼ ĤHC, as the Euler-Lagrange equation. Cðq; tÞ
is a function of the coordinates and time, and one must carry out the variations over
the whole of configuration space – all values of q – between the two time limits, a
procedure that again clearly requires the methods of the calculus of variations.
Schrödinger in his revolutionary paper I [17] constructed an expression for the
energy of a quantum system in a stationary state expressed as a functional of a
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‘wave function  (q)’, Jð ;r Þ, whose constrained variation yielded ĤH ¼ E . He
based the form of Jð ;r Þ on the classical Hamilton-Jacobi equation which
expresses mechanics in terms of a function of space and time (as does C) that
equals the classical action. Thus, unsurprisingly, the quantum Lagrangian reduces
to Jð ;r Þ in the case of stationary state. One must ensure that the wave function
remains normalized for variations of  in a stationary state. This is accomplished
by including an undetermined multiplier in Jð ;r Þ, equal to –E, to give the new
functional Gð ;r Þ. Thus Schrödinger’s variation of Gð ;r Þ to obtain
ĤH ¼ E as the Euler-Lagrange equation is another example of the principle of
least action, being equivalent to the variation of a constrained action integral for an
infinitesimal time interval.

Since the functional Jð ;r Þ equals the total energy E when minimized, the
use of the calculus of variations to obtain Schrödinger’s equation is equivalent to
minimizing the energy in the case of a stationary state. One should distinguish
use of the calculus of variations to obtain Schrödinger’s equation from that of
the more familiar ‘variational principle’, for obtaining approximate solutions to
Schrödinger’s equation. The variational principle states that the energy obtained by
averaging the Hamiltonian operator over a ‘trial function’ ’, which usually
includes the variation of parameters in the minimization of the ‘variational inte-
gral’, is an upper bound to the true energy E.

Gð ;r Þ and LðC;rC; _CC; tÞ are functionals of r or rC because they
both express the kinetic energy in the form þð�h2=2mÞhrC � rCi rather than as
�ð�h2=2mÞhCr2Ci, the form of the kinetic energy appearing in the Schrödinger
equation. This has important consequences on the extension of the variation of
the action to an open system. One readily establishes that the difference between
the two forms of the kinetic energy is locally proportional to the Laplacian of the
electron density, as given without loss of generality in Eq. (4) for a one-electron
system [25], a result alternatively expressed as KðrÞ � GðrÞ ¼ LðrÞ.

�ð�h2=2mÞC�r2C� ð�h2=2mÞrC� � rC ¼ �ð�h2=4mÞr2� ð4Þ

Integration over a region of space O bounded by a surface S(O, rs), yields Eq. (5)
identifying the average kinetic energies as K(O) and G(O), respectively.

KðOÞ � GðOÞ ¼ �ð�h2=4mÞ
ð
O
r2�ðrÞd� ¼ �ð�h2=4mÞ

þ
dSðO; rsÞr�ðrÞ � nðrÞ

ð5Þ

The volume integral of r2�¼r �r�, the divergence of a vector in Eq. (5), is
replaced by the surface integral of the flux in r� through the surface of the region
O using Gauss’ theorem. When the region O refers to all space then K(O)¼G(O)
because of the vanishing of � and its gradients at infinity, but for a region with finite
boundaries the two quantities differ by the flux in r� through the surface of O and
the kinetic energy is ill-defined. If however, the surface S(O) is one of zero-flux in
r� as defined in Eq. (6), where n(r) is a unit vector normal to the surface, then
K(O)¼G(O) and the kinetic energy is a well-defined quantity.

r�ðrÞ � nðrÞ ¼ 0 for all points rs on the surface SðO; rsÞ ð6Þ
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Equation (6) defines a surface that is not crossed by any trajectories traced out
by the vector r�(r) and is consequently referred to as a ‘zero-flux surface’. This
condition is exemplified in the maps of the gradient vector field of the density
illustrated in the next section.

The variation of Gð ;r Þ and of LðC;rC; _CC; tÞ requires that one rid the
resulting expressions for �Gð ;r Þ and �LðC;rC; _CC; tÞ of variations in rC
and _CC, just as the variation �W12 was cleared of variations of _qq. This is again
accomplished through an integration by parts that leaves the term i�hC��C at each
time end-point in the case of � _CC and the surface integral of the flux of the quantity
rC��CnðrÞ in the case of �rC. These terms are easily disposed of in the prin-
ciple of least action, the first by requiring the variations to vanish at the time end-
points and the latter by defining the Lagrangian for a closed, isolated system that
is, the entire molecule, whose boundaries are at infinity where variations in C and
rC vanish. This digression prepares one for the generalization of the action prin-
ciple by Schwinger [22] who retains the variations at the time end-points and
provides the possibility of applying the variation of the action to a system with
finite boundaries.

Observational Basis for an Atom in a Molecule

My laboratory was fortunate in the 1960s in establishing a collaboration, through
Dr. P. E. Cade presently at the University of Massachusetts, with the Mulliken-
Roothaan group at the University of Chicago. As a result, we were given access
to the near Hartree-Fock quality wave functions then being obtained by this group

1

Fig. 2. The electron density for the cyclopropane molecule in the form of a relief map and a contour

map together with a display of the gradient vector field in two planes: LHS in plane of the carbon

nuclei; RHS in symmetry plane containing one carbon nucleus and two bonded protons; the density

is a local maximum at each nucleus with the result that space is partitioned into atomic basins, each

basin being defined by its own set of trajectories traced out by r�, the gradient vectors of the density,

that terminate at a given nucleus. Shown in bold are the pairs of trajectories in both planes that

terminate at the (3, �1) or bond critical points (CPs); these CPs, whose positions are denoted by dots,

are found only between certain pairs of nuclei; each such pair of trajectories is part of a set defining a

two-dimensional manifold embedded in three-dimensional space, which terminate at each bond CP

and define an interatomic surface; the non-nuclear maximum appearing in the display of � on the

RHS is in the plane of the interatomic CjC surface for the out-of-plane C nuclei, that is, � is a

maximum at the bond CP in the interatomic surface; the associated set of set of trajectories defining

the CjC interatomic surface is represented by the trajectories that terminate at the bond CP in the

lower portion of the associated gradient vector map; these are zero-flux surfaces – they are not

crossed by any trajectories of r�; unique pairs of trajectories, also shown in bold, originate at each

bond CP, and define a bond path – a line of maximum density linking nuclei sharing an interatomic

surface and the nuclei are bonded to one another; trajectories originate at the ring or (3, þ1) CP at

the centre of the ring and define a ring surface in LHS diagram and a single pair of trajectories ter-

minate at this point to define the ring axis in the RHS diagram; thus the behaviour of the trajectories

for a ring CP is just the opposite to that found for a (3, �1) CP; the outer contour value is 0.001 au

and the remaining contours increase in value in the order 2�10n, 4�10n, 8�10n au with n beginning

at �3 and increasing in steps of unity; the same contours are used in all density maps
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using large STO basis sets (s, p, d, and f functions) with optimized orbital exponents
for about 300 neutral and charged states of A2, AB, and AH diatomic molecules.
Our interests centred on the use of Feynman’s electrostatic theorem [26] in the
interpretation of chemical binding and therefore, on the electron density distribu-
tions obtained from these wave functions. The electron density is the measurable
expectation value of a quantum observable and is now routinely measured in
accurate x-ray diffraction experiments [27]. This was not the case in the 60s
however, and we based our ‘observations’ on the properties of the density distri-
butions obtained from the Chicago wave functions. Our initial work involved the
use of density difference maps to determine the changes in the atomic densities
encountered in molecule formation – ‘bond density maps’ – together with an
orbital analysis of the forces exerted on the nuclei [28–31]. The force analysis
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provided a classification of the canonical orbital densities as binding, antibinding,
and nonbinding, the counterparts of the bonding, antibonding, and nonbonding
classification introduced by Mulliken based on energy considerations. To someone
coming to theory from experiment these studies were unsettling. The density dif-
ference maps depended upon the ‘states’ one chose for the separated atoms and the
orbital analysis was similarly dependent upon the choice of orbitals. All of the
results were removed from experiment.

If one is interested in the density, then why introduce subjective elements into
the analysis? The electron density is a measurable scalar field whose form is
subject to topological analysis. The atomic form of matter stares ‘out’ at one from
the total density, see Fig. 2. This form is a consequence of the principal topological
feature of the density – that in general, it exhibits maxima at the positions of the
nuclei. This is a manifestation of the single, most dominant force operative in an
atom, molecule, or crystal – the attraction of the point-like nuclei for the diffuse
distribution of electron density. It is well to bear in mind that this is the only
attractive force operative in an atomic system and is the sole force responsible
for chemical bonding, the mechanics of which are determined by the Ehrenfest
force acting on the electron density and the Feynman force acting on the nuclei,
forces that are combined in the virial theorem to inter-relate the potential, kinetic,
and total energies of a molecule [32, 33, 19].

The dominant topological feature of the density leads to an exhaustive parti-
tioning of real space into a set of non-overlapping mono-nuclear domains O, as
illustrated in Fig. 2, each of which is bounded by a surface S(O, rs) that exhibits a
zero-flux in the gradient vector field of the electron density, a condition expressed
above in Eq. (6) [34]. It is now well-documented that the topology of the density,
as revealed in the associated gradient vector field, yields a definition not only of
atom-like regions, but also delineates lines of maximum electron density that link
the nuclei of neighbouring atoms – the ‘bond paths’ [19, 35]. The network of bond
paths generate a molecular graph that defines a system’s structure. The topological
structures have been shown to recover the ‘chemical structures’ in a multitude of
systems, in terms of densities obtained from both theory and experiment, struc-
tures that were previously inferred from classical models of bonding in conjunc-
tion with observed physical and chemical properties. The dynamics of the gradient
vector field as caused by displacements of the nuclei, defines all possible struc-
tures and, through the theory of structural stability, the mechanisms of structural
change [36, 37]. Clearly if the nuclear dominated domains could be identified with
the atoms of chemistry and the lines of maximum density with ‘bond paths’
linking bonded atoms [38], then ‘conceptual chemistry’ is both revealed in and
is a consequence of the form of the distribution of electronic charge throughout
real space.

It soon became apparent from the study of the ‘Chicago densities’ that the O
regions were transferable to varying extents between molecules [34]. Indeed, if one
insisted that the partitioning exhausts a system, they had the property of maximiz-
ing any transferability that was present. Most importantly, this transferability was
observed not only for the density but for other properties as well, in particular for
the kinetic energy. Consider, as a simple example, observations that focused on
the topological regions O identified with the Li atoms in the charge distributions
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of three molecules being shown in Fig. 3. One must regard the observed similarity
in the forms of the Li atoms so defined, as no less than remarkable when one
considers the very different natures of its bonded neighbours, hydrogen, oxygen,
and fluorine. The electron populations are obtained by integration of �(r) over the

Fig. 3. Contour maps of the ground state electron density distributions in the plane of the nuclei for

LiH (1�þ), LiO (2�), and LiF (1�þ) in descending order; the intersection of the zero-flux surface

with the plane is indicated; the reader is asked to note the high degree of similarity in the distribution

of the density over the basins of the Li atoms defined in this manner and to contrast this with the very

different distributions found within the basins of its neighbours, differences that extend up to the

interatomic surface; any other choice of surface would either include a portion of the neighbouring

density, which changes radically in each case, or assign to the neighbour a portion of the Li density

that is similar in all three molecules; the densities are obtained from the ‘Chicago’ near Hartree-Fock

wave functions
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atomic basin and they yield similar net charges for the Li atoms of þ0.91, þ0.93,
and þ0.94 in LiH, LiO, and LiF, respectively. This is a simple example of the most
important observation underlying the concept of a functional group: that atoms or
linked groupings of atoms can exhibit characteristic forms and properties in spite
of changes in their immediate neighbours. This observation is not recoverable from
any model employing ‘overlapping atoms’.

The kinetic energy densities K(r) and G(r) are also scalar fields and their
forms and properties were studied in parallel with the density [25] resulting in
a most important observation: both K(r) and G(r) exhibit the same degree of
transferability as does �(r) for a topological atom [34]. Thus the conservation
in the form of �(r) and in its integrated electronic population on transfer between
molecules is paralleled by a conservation in the form of the electronic kinetic
energy density and its integrated value, the averages of the kinetic energy den-
sities for the Li atom in three molecules falling within 8 kcal=mol of one another.
(Since each region is bounded by a zero-flux surface, the average kinetic, energy
T(O) is well-defined for a topological atom, with K(O)¼G(O)¼T(O), Eqs. (4)
and (5).) This paralleling behaviour of �(r) and G(r) was the crucial observation
that led to the theory of atoms in molecules, as deduced from the following chain
of reasoning.

The virial theorem for a system governed by Coulomb forces states that the
total energy of a molecule in electrostatic equilibrium (no Feynman forces acting
on the nuclei) equals the negative of the average kinetic energy of the electrons,
E¼�T. If one could show that there is a virial theorem for an atom in a mole-
cule – that is, for a region of space bounded by a zero-flux surface – then one
could use this theorem to define E(O), the energy of an atom in a molecule, in
terms of its electronic kinetic energy T(O), using the expression E(O)¼�T(O).
Since T(O) is additive, the same additivity would apply to E(O) and the energy
of a molecule would be the sum of its atomic contributions, E¼�OE(O). The
atomic virial theorem, if it indeed exists, accomplishes what was said to be
impossible – a unique physical partitioning into atomic contributions of all of
the electrostatic interactions, both repulsive and attractive, between the nuclei
and the electrons.a

The identification of E(O) with –T(O) has a number of important conse-
quences. A statement of the virial theorem for a topological atom would predict
that when the form of an atom in real space remains unchanged on transfer, so
would its contribution to the total energy. That is, based on these observations, the
energy of an atom and thus surely its other properties, would be transferable to the

a The spatial partitioning of the energy is a consequence of the virial theorem. The electronic potential

energy is determined by virial of the Ehrenfest force exerted on an electron at some position r. This

quantum mechanical force determines a force density at a point in space and its multiplication by r to

yield the ‘virial of the force’ transforms the force density into a potential energy density which upon

integration over all space yields the total potential energy of the molecule, including the repulsions

between the nuclei. Thus physics, coupled with observation, accomplishes what was deemed impos-

sible. As detailed below, all open system properties are defined in terms of real-space density

distributions, in the same manner as is the electron density, Eq. (1). This is direct a consequence

of the field-theoretic generator acting on the coordinates of a single electron

830 R. F. W. Bader



same extent as is its charge distribution. The identification E(O)¼�T(O) satisfies
in a single stroke the two essential requirements of the atoms of ‘conceptual
chemistry’ – additivity and transferability of properties. It is common sense that
two identical pieces of matter must possess identical properties and consequently,
two atoms possessing identical charge distributions, that is, atoms indistinguishable
in real space, must exhibit identical properties. Thus the form of a topological
atom, since it is defined by its charge distribution as a bounded region of real
space, necessarily reflects its properties and one understands why the atoms and
functional groups defined by the topology of the density maximize the transfer-
ability of properties from one molecule to another.

What is remarkable, is the exceptional degree of transferability that the charge
distribution of an atom or a functional grouping of atoms can exhibit. While the
initial observations regarding properties paralleling form were for atoms in diatom-
ic molecules, they have since been extended to encompass many types of func-
tional groups, obtained from experiment [39–43] and theory [11, 19, 44–46].
Transferability of form and properties is found to be particularly evident for the
groupings of atoms that correspond to the building blocks of biological macro-
molecules. Recent work, both experimental [47, 48] and theoretical [49–51], has
demonstrated the remarkable transferability of the charge distributions and proper-
ties of the main-chain and other functional groups common to the amino acids.
While such a finding must come as no surprise to a chemist used to understanding
the properties of a protein in terms of its amino acid residues for example, it
requires a theory of atoms in molecules to implement and make quantitative use
of this knowledge.

From Schrödinger to an Atom in a Molecule

The observations made on the properties of molecular electron density distributions
enable one to reformulate the question of ‘how does one define at atom in a
molecule?’ into ‘can one show that the virial theorem applies to a region of space
bounded by a zero-flux surface?’ It is clear that if the virial theorem applies to such
a region, then all theorems should apply and one is therefore, asking whether a
region bounded by a zero-flux surface and its properties are derivable from quan-
tum mechanics. In essence, can one define the quantum mechanics of an open
system?

It is always best to begin at the beginning and we therefore started our search
by asking whether or not Schrödinger’s derivation of the ‘wave equation’ given in
paper I from 1926 could be generalized to an open system [20]. He obtained his
equation ĤH ¼ E by making the functional Gð ;r Þ stationary with respect to
first-order variations in  in the manner outlined in the section on the principle of
least action. The limits of integration on the electronic coordinates in Gð ;r Þ
coincided with a surface infinitely removed from all of the nuclei, that is, the
functional described a closed system with infinite boundaries. What would one
obtain from the variation of Schrödinger’s functional defined for a region of real
space O with finite boundaries, a functional denoted by Gð ;r ;OÞ?

The result of Schrödinger’s variation of Gð ;r Þ is summarized in Eq. (7). It
consists of a contribution from the integral over the entire system and another from
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an integration over its surface,b the surface terms arising from the removal of the
terms involving �r by an integration by parts.

�Gð ;r Þ ¼
ð

drfĤH � � E �g� þ
þ

dSðrsÞfð�h2=2mÞr � � nðrÞ� g ¼ 0 ð7Þ

Since the surface in this case resides at infinity where � ¼ 0, the surface term
does not contribute to the variation. Thus �Gð ;r Þ will vanish for arbitrary � 
only if ĤH �¼ E � or equivalently for variations in  �, only if ĤH ¼ E and
making Gð ;r Þ stationary yields Schrödinger’s equations for a stationary state.
In the introduction to paper I, Schrödinger states that the ‘customary quantum
conditions’ previously introduced in an ad hoc manner, are recovered by the
‘whole numbers’ (quantum numbers) generated in the solutions to his eigenvalue
equation.

In the variation of Gð ;r ;OÞ for a bounded region of space O, the integration
has finite limits and one must include a term corresponding to a variation of the
boundary, since its form must be determined in the variational procedure. The re-
sult of varying Gð ;r ;OÞ is given in Eq. (8). A term corresponding to the first
terms on the RHS of Eq. (7) is again obtained and again vanishes since the Euler-
Lagrange equation ĤH ¼ E still applies to the total system of which O is a part,
and only the surface terms remain in the variation.

�Gð ;r ;OÞ ¼
þ

dSðO; rsÞfð�h2=2mÞr �� nðrÞ þ �SðO; rsÞfð ;r Þg þ cc ð8Þ

The first surface term, as explained above, arises by ridding the expression of
variations in r . The function f( ,r ) in the second term denotes the integrand
in Schrödinger’s functional and when evaluated in the surface and multiplied by
the infinitesimal shift in the surface �S(O), gives the contribution to the variation
resulting from the variation in the surface of the region O. Since functions are not
necessarily Hermitian over an open system O, the variation must include contribu-
tions from the complex conjugate (cc) terms. Equation (8), which does not define
any particular surface, does not appear promising. Clearly the requirement of the
principle of least action that the variation of the appropriate functional vanishes
must be discarded and the concept of stationarity broadened. We were initially
unprepared for this result, little realizing that it forms the basis for the general-
ization of the principle of least action introduced by Schwinger.

Equation (8) is transformed into a statement of physics by two rather remark-
able consequences of the properties of the Laplacian of the electron density,
r2�(r). The first is that when Schrödinger’s equation is satisfied, the integrand
f( ,r ) of Schrödinger’s functional reduces to –L(r), the term proportional to

b This and the following expressions are written for a single electron to keep the mathematical

formalism as simple as possible. However, the integration in Eq. (7) is readily extended to the many-

electron case by the simple insertion of the symbol N
Ð

dr0 which denotes a summation over all spins

and an integration over all electronic coordinates other than r, the coordinate that is averaged over the

open system, the same integration that is used to define the electrons density, Eq. (1). The symbol h iO
that is employed at a later stage, denotes the same mode of integration followed by an integration of the

coordinate r over the region O
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r2�(r) defined in Eq. (4). This same property obtains when the integrand is the full
Lagrangian density of the action integral in the general time-dependent case and
persists even in the presence of an electromagnetic field. So the term involving the
variation of the surface may be re-expressed as a term proportional to
�S(O,rs)r2�(r). The second of the remarkable consequences of the Laplacian is
its appearance in the constraint that determines the surface of the open system. This
constraint is presented in detail in a number of places, being only briefly outlined
here. Imposing the zero-flux surface condition expressed in Eq. (6) at every stage
of the variation is equivalent to requiring that the variation of the integral of r2�(r)
over the region O vanishes. This condition in turn enables one to replace the term

�S(O,rs)r2�(r) appearing in the surface integral with the expression that, when
combined with the remaining surface term, transforms the contribution from one
without any discernable physical content for a surface of unspecified form, into
an integral describing the flux in the variation of the quantum mechanical cur-
rent density, the quantity �j(r), through a surface of zero-flux in r�, as shown
in Eq. (9).

�Gð ;r ;OÞ ¼ �ði�h=2Þ
þ

dSðO; rsÞ�jðrÞ � nðrÞ þ cc ð9Þ

Thus the imposition of the zero-flux boundary condition on the variation of Schrö-
dinger’s functional causes it to be ‘stationary’ by requiring its variation to equal the
surface flux in the current generated by the variations in  . While unknown to us at
the time, Eq. (9) is a result of Schwinger’s principle of stationary action for a time-
independent system.

The variational result given in Eq. (9) is put in an operational form by re-
placing the variations in  with the action of quantum mechanical operators on  .
That is, one makes the substitution � ¼ �"ði=�hÞĜG where " denotes an infini-
tesimal change resulting from the action of the operator ĜG on  . ĜGðrÞ may be any
linear Hermitian operator constructed from the electronic position and=or mo-
mentum coordinates of a single electron and as such, it can describe any and all
possible changes in  and in the properties of the system. ĜG is referred to as the
generator of the change in the system. With this substitution, Eq. (9) becomes
Eq. (10) where jG(r) is the current density for the property determined by the
generator ĜG.

�Gð ;r ;OÞ ¼ �ð"=2Þ
�þ

dSðO; rsÞjGðrÞ � nðrÞ þ cc

�
ð10Þ

Thus the variation in Schrödinger’s energy functional for an open system
bounded by a zero-flux surface – an atom in a molecule – is proportional to the
surface flux in the current density of the infinitesimal generator causing the change
in the system. Fluxes in currents through the bounding surface is the feature that
distinguishes the physics of an open system from that of a total system, for which
all surface terms vanish.

The final, encompassing statement of the principle of stationary action for an
open system in a stationary state is obtained through the use of the equation of
motion for the generator ĜG. In the general time-dependent case, the time derivative
of the average value of ĜG, dhĜGi=dt is determined by the average of the commutator
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(i=�h) ½ĤH; ĜG�. This average vanishes for a molecule in a stationary state yielding the
result shown in Eq. (11).

h ; ½ĤH; ĜG� i ¼ 0 ð11Þ
The same commutator average does not however, vanish for an atom in a molecule,
the contribution from the commutator being balanced by the flux in the current of
ĜG through the bounding surface, a result readily obtained from Schrödinger’s
equation [19] and given in Eq. (12).

ði=�hÞh ; ½ĤH; ĜG� iO þ cc ¼
þ

dSðO; rsÞjGðrÞ � nðrÞ þ cc ð12Þ

Equation (12) yields the same surface term obtained in the variation of Gð ;r ;OÞ
and substitution of this result into Eq. (10) yields the atomic statement of the
principle of stationary action for a stationary state (Eq. (13)) [19].

�Gð ;r ;OÞ ¼ �ð"=2Þfði=�hÞh ; ½ĤH; ĜG� iO þ ccg ð13Þ
This statement determines the physics of an atom in a molecule. All of the theo-
rems of quantum mechanics are obtained by the appropriate choice of the genera-
tor, ĜG ¼ r̂r � p̂p, the product of the electronic position and momentum coordinates,
yielding the virial theorem for example. Equation (13) applies to any system
bounded by a zero-flux surface and thus a single principle provides the quantum
mechanical description of the total system and of its constituent atoms. Indeed one
may regard the physics of some total system – of the entire molecule – as a special
limiting case of the more general expression pertaining to an open system given in
Eq. (13). Thus when O refers to the total molecule, the commutator average equals
zero, Eq. (11), and the variation in Schrödinger’s functional becomes stationary in
the usual sense that �Gð ;r ;OÞ ¼ �Gð ;r Þ ¼ 0. It is important to note that
the derivation of Eq. (13) yields Schrödinger’s equation, as well as all of the
theorems of quantum mechanics. Thus a single principle serves to completely
determine the physics of a stationary state. This statement is a consequence of
Schwinger’s principle.

From Dirac to Schwinger

The above identification of the variations in  with the action of infinitesimal
generators "ĜG has deep implications, beyond yielding operational expressions
for the mechanics of an open system. In classical mechanics one can perform a
transformation – termed a canonical transformation – from one set of position and
momentum coordinates to another which again satisfy Hamilton’s equations of
motion with respect to a Hamiltonian expressed in the new coordinates. The trans-
formation leaves all of the numerical values of a system’s properties unchanged.
The same freedom of choice is afforded by quantum mechanics in the form of a
‘unitary transformation’, one that when applied to both the state function and
observables of a system, leaves the description of the system unchanged and one
is free to choose the representation most convenient to the problem at hand.

Of particular importance to both classical and quantum mechanics are the
infinitesimal forms of the canonical and unitary transformations. Unlike the latter
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transformations that leave all system properties unchanged, their infinitesimal
forms are defined such that their use causes real infinitesimal changes in a system
and its properties. These transformations are driven by so-called generators that are
defined in terms of functions of the position and=or momentum coordinates. For
example, the generator of a classical temporal change is given by H(q,p)dt, H(q,p)
being the Hamiltonian, and when applied to q(t) and p(t), both are transformed into
the values they have at the time tþ dt, as predicted by Hamilton’s equations of
motion. Similarly in quantum mechanics, the temporal generator is given by�ĤH�t,
and its action causes a displacement in time of the state vector and of a system’s
observables as predicted by Schrödinger’s equation and the Heisenberg equations
of motion, respectively.c

The present account only serves to summarize in words the important conse-
quences of infinitesimal transformations. The underlying mathematics is not diffi-
cult and is given in my book [19] and admirably presented in Goldstein’s book on
classical mechanics [53]. What is important is that infinitesimal unitary transfor-
mations, whose definition and operation lie at the heart of Dirac’s transformation
theory, enable one to describe any and all possible changes that can occur in a
quantum system and its properties.

Our generalization of the variation of Schrödinger’s functional necessarily led
to the generation of surface terms, terms that are discarded in the principle of least
action when applied to a total system, but which play a crucial role in the physics
of an open system. Corresponding terms arise in the variation of the time derivative
of the state vector C in the general time-dependent case, leading to contributions at
the time end-points, contributions that are again discarded in the usual statement of
the principle of least action. Schwinger took the bold step of not only retaining the
variations of the state vector at the time end-points but of varying the end-points
themselves and followed these steps with the identification of these variations with
the generators of infinitesimal unitary transformations [22]. By doing so he com-
bined the action principle, which yields the equation of motion, with Dirac’s
transformation theory, the latter though infinitesimal transformations, enabling
him to obtain from a single dynamical statement ‘all of physics’.

Dirac set the stage for the work of Feynman and Schwinger. First and foremost
it was he who introduced transformation theory into quantum mechanics. This is
the underlying mathematical formulation of the new physics which consists of the
general mathematical scheme of linear operators and state vectors with its asso-
ciated probability interpretation. In doing so, he stressed how the theory of infini-
tesimal unitary transformations in quantum mechanics parallels the infinitesimal
canonical transformations of classical theory, a parallelism the importance of
which has been commented on above.

In particular, in 1933 these ideas led Dirac to write what was to be a paper of
singular importance [54]. In it he posed the question of what would correspond to

c One feels compelled to quote Dirac at this point [52]: ‘‘In classical mechanics the dynamical

variables at time tþ �t are connected with their values at time t by an infinitesimal contact [canonical]

transformation and the whole motion may be looked upon as the continuous unfolding of a contact

transformation. We have here the mathematical foundation of the analogy between classical and

quantum equations of motion. . .’’
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the limiting classical expression for the quantum probability amplitude for the pas-
sage of a system with a set of coordinates denoted collectively by q1 at a time t1 to
another set denoted by q2 and t2, a quantity denoted by the transformation amplitude
hq1, t1jq2, t2i. The transformation amplitude suffices to determine the dynamical be-
haviour of the system with time, since it relates the state function at time t2 to that at
time t1. In effect, Dirac was asking for the correspondence of quantum mechanics
with the Lagrangian method of classical mechanics, a formulation he considered to
be more fundamental than the one based on Hamiltonian theory.

We have discussed above how Lagrange’s equations of motion, that determine
the motion of a system from one classical state (q1, t1) to another (q2, t2), are
obtained from the principle of least action by the minimization of the action inte-
gral W12. Dirac was led to propose that the transition amplitude hq1, t1jq2, t2i be
given by exp (i W12=�h) where W12 is the classical action evaluated along the unique
path that causes it to be stationary. This proposal set the stage for the reformula-
tions of quantum mechanics put forth by Feynman and Schwinger.

The classical concept of a system following a uniquely defined trajectory must
be abandoned in the quantum description. Thus Feynman, in 1948, replaced the
expression given by Dirac for the single classically allowed path, by a correspond-
ing sum over all possible paths connecting the two space-time points to obtain his
‘path integral expression’ for the probability amplitude [21]. Feynman went on to
show that the path integral expression yields Schrödinger’s equation and the quan-
tum commutation relations. The introductory remarks that lay the foundation for
this approach that he makes in his 1948 paper are as readable as are the books ‘‘The
Feynman Lectures on Physics’’ [24].

Schwinger, in 1951, demonstrated how one could combine the action principle
with Dirac’s transformation theory by basing it on the differential form of Dirac’s
proposal [22]. Schwinger realized that infinitesimal unitary transformations can be
used to provide a differential characterization of the transformation function as
done in Eq. (14) where the infinitesimal generators "ĜGðtÞ ¼ F̂FðtÞ act separately
on the state vectors hq1; t1j and jq2; t2i at the two time end-points.

�hq1; t1jq2; t2i ¼ ði=�hÞhq1; t1jF̂Fðt1Þ � F̂Fðt2Þj q2; t2i ð14Þ
This led him to propose his new dynamical principle, the ‘quantum dynamical

principle’ given in Eq. (15).

�hq1; t1jq2; t2i ¼ ði=�hÞhq1; t1j�ŴW12jq2; t2i ð15Þ
A comparison of the two expressions leads to Schwinger’s principle of stationary
action (Eq. (16)).

�ŴW12 ¼ F̂Fðt1Þ � F̂Fðt2Þ ð16Þ
This principle states that the ‘action’ is unaltered by changes between the times t1
and t2, being effected only by the action of generators at the two time end points.
Equation (16) implies Schrödinger’s equation of motion (just as it is implied in
Eq. (10) in the variation for a stationary state) and it also yields the quantum com-
mutation relations.

The time evolution of an open system will sweep out a space-time volume and,
in the detailed formulation of his principle, Schwinger allows for generators to act
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not only at the time end points, but also on the spatial boundaries of the open
system by retaining the variations both on and of its surface at each time t. The
retention of the variations of and on the zero-flux surface at a single time t followed
by their identification with the action of infinitesimal generators, is precisely the
step made in our generalization of Schrödinger’s variation of his energy functional
leading to Eqs. (10) and (13). These variations give rise to the same surface terms
that are found in Schwinger’s formulation and are dealt with in precisely the same
manner. While we proceeded out of necessity, Schwinger realized that by making
such an identification at both the space-like and time-like surfaces bounding the
space-time volume, he could incorporate all of physics into a single dynamical
principle.

By 1978 it was realized that our generalization of the variation of Schrödinger’s
functional was but a special case of the general statement of physics provided by
Schwinger’s principle of stationary action and the theory of an atom in a molecule
was readily extended to the general time-dependent case and shown to be derivable
from Schwinger’s principle of stationary action [15, 55]. The derivation of the
principle for an atom in a molecule was presented from a new perspective in an
article in Physical Review in 1994 where the term ‘proper open system’ was
introduced along with the designation ‘quantum theory of atoms in molecules’
(QTAIM) [16].

We note in closing this section, that Schwinger’s work was characterized by a
strict adherence to the phenomenological approach to physics through his insis-
tence that one appeals to and compares with experiment whenever possible. So
QTAIM, since it follows his path to the physics of an open system, necessarily
emphasizes the ties that link it with observation and measurement, an approach that
will necessarily distance it from other attempts to define an atom in a molecule and
its properties.

Chemistry Using QTAIM

Experimental Confirmation and Chemical Relevance of QTAIM

Since QTAIM is the statement of the principle of stationary action applied to an
open system, it necessarily recovers all molecular properties in terms of additive
atomic or group contributions. The single necessary and sufficient criterion for
determining the relevance of QTAIM atoms to chemistry is agreement of the
predicted atomic and group contributions with their experimental values. This has
been demonstrated and documented for many properties in numerous systems:
among them, the experimental additive contributions to volumes, heats of for-
mation, electric polarizabilities, and magnetic susceptibilities of the homologous
series of saturated hydrocarbons as previously summarized [44], along with more
recent examples [11, 45, 46]. Agreement with observation is the only test of theory.
That some experimental group contributions predicted by QTAIM were previously
known, the magnetic contributions measured by Pascal in 1910 [56] and the heats
of formation by Rossini and co-workers in 1946 [57] is irrelevant. Recovery of
established observations as a test of theory is as old as Newton and exemplified
in quantum mechanics by Schrödinger’s first paper [17] wherein he recovered
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quantization of the angular momentum and energy in the hydrogen atom and pre-
dicted its spectrum, in agreement with the measured values of Balmer and Lyman,
and by Schwinger’s calculation of the ‘anomalous magnetic moment of the elec-
tron’ following its measurement by Rabi and co-workers [58], showing that the
value was not 2 as predicted by Dirac’s theory but rather g=2¼ 1þ�=2�, an
important step in the development of QED [59]. The demonstration that measured
values of group properties are predicted by quantum mechanics, while perhaps less
momentous for physics, is of vital importance to an experimental chemist. The
reader is asked to realize that there are no ‘adjustable parameters’ in applying
QTAIM, the appropriate Hamiltonian being the sole input to its predictions.

The physics of an open system brings to the fore the interdependence of atomic
contributions in the understanding of measured properties, as exemplified by an
atomic charge defined by QTAIM. Not only is an atomic charge a measurable
quantum expectation value [13], it appears in the expressions determining a wide
range of experimentally measurable properties [60]: atomic charges contribute to
the dipolar, quadrupolar, and all higher molecular moments; their field induced
changes appear in the measurable contributions to the atomic polarizability [61]
and in the cell contributions to the polarization of a dielectric [62, 63]; their vibra-
tionally induced changes appear in the expressions for infrared and Raman in-
tensities [64, 65]; the displacement of the atomic charges caused by a molecule’s
interaction with light as described by the relevant transition density appears in the
expression for the atomic contribution to the intensity of an electronic transition
[68]. The atomic charge or its change is not the sole contributor to any of these
properties, all being dependent upon the requisite atomic polarizations as well.

In the presence of a magnetic field, the property corresponding to an atomic
polarization is the atomic magnetization, and this property plays a similar role in
determining the atomic contributions to the magnetic susceptibility and chemical
shielding [66, 67]. The atomic charge is paralleled in the magnetic case by the
atomic current, the basin average of the field induced electronic velocity. The
phenomena of polarisation and magnetisation, permanent or induced, have a com-
mon physical basis when described in terms of the physics of an open system; all
exhibit a single underlying structure that is expressed in terms of a contribution
from the polarization within the atom’s basin and from the surface flux of the elec-
tric field caused by the inter-atomic charge transfer in the electric case and from
the surface flux of the induced current in the magnetic case [60, 63]. There are no
restrictions as to the applicability of the expressions. This physics and the ap-
peal to experiment it affords are lost when one employs other definitions of an
atomic charge.

Examples of Atoms as Open Systems

Figure 4 displays the Cr, Fe, and Ni atoms in their hexa-, penta-, and tetra-carbonyl
complexes respectively, as regions of space bounded by the inter-atomic surfaces
that are shared by the metal atom M with the carbons of the CO groups. The
bonding in these molecules using QTAIM in a study to demonstrate its comple-
mentarity with molecular orbital theory has appeared recently [69a]. A companion
paper, using the vehicle of an oxidative addition reaction, demonstrates how
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QTAIM recovers the rationalizations of frontier orbital theory and illustrates its use
in predicting possible structural instabilities in the addition product [69b]. Every
property defined by a quantum observable is determinable for these bounded
regions of real space. The change in the energy of M in forming the complex –
the contribution of M to the energy of formation – stated in terms of its separate
attractive and repulsive contributions is determined. The energy of interaction of M

Fig. 4. The Cr, Fe, and Ni atoms in their carbonyl complexes defined by the metaljcarbon (MjC)

interatomic surfaces; there is a bond path emanating from the bond critical point (bcp) denoted by a

red dot in each MjC surface; the bond path links a carbon nucleus, denoted by a black sphere, that is

in turn linked to an oxygen denoted by a red sphere, the associated bcp being denoted by a second

red dot; all of the properties of each enclosed region of space are defined and make additive

contributions to the properties of the complex; note the planarity of the MjC surfaces, an apparent

characteristic of metal carbonyl complexes, a result in line with the nearly equal sharing of the

density between the two atoms, as determined by the exchange index
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with every other atom in the complex is also defined; the attractive interaction of
the nucleus of M with the charge density of another atom; the repulsion of the
charge distribution on M with the charge distribution of another atom and the
reduction in this contribution resulting from the exchange of electrons on M with
those on the second atom, quantifying the notion of ‘�, �-spin exchange reso-
nance’. One finds that the binding in the metal carbonyls is a result of two con-
tributions: (1) the dominant and exceptional decrease in the energy of interaction of
the atomic density on M, bounded by the surfaces shown in Fig. 4, with the nuclei
of the surrounding cage of ligand atoms; (2) the stabilization of the carbon atoms
resulting from the transfer of density primarily from the metal atom. As discussed
below, the electronic charge transferred to carbon from M is demonstrated to be
distributed in the form of a �-like torus of density encircling the C–O axis, in the
manner envisaged in the Dewar-Chatt-Duncanson model of d�–p�� back bonding
[70, 71]. This approach to the bonding in the carbonyl complexes wherein every
quantity is related to the expectation value of a quantum operator, is contrasted
with those based on arbitrary and physically unrealizable partitionings of the
energy of formation [72–74] using energy decomposition schemes [75, 76].

Electron Localization and Delocalization

The concepts of localization and delocalization of electrons play essential roles
in chemistry [77]. These concepts transcend orbital models, being instead conse-
quences of the exclusion principle as embodied in the pair density. The spatial
localization=delocalization of electrons is determined by the corresponding proper-
ties of the density of the Fermi hole [78], a negative quantity that describes the
extent to which the density of a second electron is excluded from the neighbour-
hood of another electron possessing the same spin. If the density of the Fermi hole
is localized about some point, then all other �-spin electrons will be excluded from
the space corresponding to the exclusion of one electronic charge. In a closed-shell
system, the Fermi hole of an electron of �-spin will be similarly localized, resulting
in a pair of electrons being localized about that point. If on the other hand, the
density of the Fermi hole is diffuse, then the exclusion of same spin electrons
occurs over an extended region of space and the electron is delocalized. The extent
of the localization of the density of the Fermi hole to one atom is obtained by the
double integration of the exchange density, over its basin yielding �(A), the local-
ization index for atom A. Its delocalization over two atoms, A and B, is obtained
by a corresponding integration of the exchange density over both atomic basins to
yield �(A, B), the delocalization index [79]. One has the simple understanding that
if the exchange of electrons is largely confined to a given atomic basin, then the
electrons are correspondingly localized on that atom, while if the electrons ex-
change between atomic basins, then the electrons are delocalized over both atoms
or, equivalently, are shared by both atoms. Electrons that exchange are indistin-
guishable and consequently, the physical picture underlying electron delocalization
is exceedingly simple – it is determined by the extent to which the electrons on one
atom exchange with those on another.

In the examples of the metal atoms in their carbonyl complexes, the most
important observation is the significant degree of delocalization between the metal
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and the carbon atoms, with �(M,C) values clustered around unity, indicating a close
to equal sharing of one Lewis pair between M and each of the C atoms [69]. The
number of electrons of M that are delocalized onto the carbonyl groups amounts to
2.9, 3.0, and 2.3 respectively for Cr, Fe, and Ni, �86% of which are delocalized
onto the carbon atoms in each case. The relatively small charge transfer of elec-
tronic charge from M to each carbon atom, of 0.19e for Cr, 0.15e for Fe, and 0.13e
for Ni, is consistent with the nearly equal sharing of the density delocalized be-
tween M and each C. These properties of charge transfer and equal sharing are
reflected in the planar form of the MjC inter-atomic surfaces, Fig. 4, a property
associated with homonuclear interactions, but found to be characteristic of a tran-
sition metaljcarbonyl carbon interaction.

QTAIM and Orbital Models

QTAIM provides the possibility of assessing the viability of orbital models. Orbital
analyses for example, are equivocal regarding the operation of the Dewar-Chatt-
Duncanson (DCD) model of d�–p�� backbonding in metal carbonyls [70, 71]. The
atomic properties of carbon however, can be used to provide a quantitative demon-
stration that the charge transferred from M to a carbonyl carbon is localized pri-
marily in a �-like distribution on C. The quadrupole moment of an axial molecule
determines the extent of accumulation of �-like electron density along the mole-
cular axis, as opposed to its �-like accumulation in a torus about the axis. Because
the component parallel to the axis QkðCÞ, and its two perpendicular components
Q?ðCÞ, sum to zero, the changes in the parallel or perpendicular components
provide a direct determination of the extent of transfer of density between the �
and � systems of a linear molecule. In free CO at the DFT level of theory, there is a
slight preponderance of the perpendicular (�) over the parallel (�) components and
the magnitude of the atomic moment is small, jQðCÞj ¼ 0:18 au. The change in the
quadrupole polarization of CO upon complexation is restricted almost entirely to
the increase in the �-like distribution within the basin of the carbon atom and the
resulting changes are dramatic [69a]. jQ?ðCÞj increases by a factor of 8 for Cr and
by 10 for Ni and jQðCÞj increases by factors ranging from 8 to 12, with the
maximum occurring for the equatorial carbon in the iron complex and decreasing
in the order Ni>Cr� Fe for axial C. The quadrupole polarisation of carbon in the
complex is dominated by the toroidal accumulation of density, a consequence of
the increase in its � density distribution. Thus Q(C) provides a quantifiable demon-
stration of the increase in � density, both absolutely and relative to the � density of
a carbon atom that accompanies its complexation. The effects are smaller by an
order of magnitude for oxygen, with only a small increase in the magnitude of its
perpendicular components. The increase in the magnitude of the perpendicular
components of Q(C) and the associated large increase in jQðCÞj for a carbon atom
in a CO ligand provide an unequivocal and quantifiable demonstration of the
operation of the DCD d�–p�� back bonding model.

The atomic overlap matrix is particularly useful in bridging molecular orbital
models and the atomic properties of QTAIM. A diagonal element of this matrix
yields the number of electrons of a given orbital that reside within an atomic basin,
enabling the assignment of contributions from individual orbitals to an atomic
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population. The orbital contributions clearly indicate the importance of d�–p��
back-bonding from M to the carbons of the ligands, relative to � donation from the
ligands to the metal. Of the twelve electrons in the t1u, eg, and a1g sigma bonding
orbitals in Cr(CO)6, only 0.95e reside on the metal atom, while of the 6 electrons in
the t2g set, 3.6e remain on Cr while the remaining 2.4e reside on the ligands, with
0.25e on each carbon. By symmetry, these electrons occupy the 2�� antibonding
orbital of CO. The association of the ‘‘a’’ and ‘‘e’’ orbitals of the axial ligands in
Fe(CO)5 with the respective � and � orbitals of the ligands enables one to deter-
mine that the � population of an axial carbon atom increases by 0.32e on bonding
to Fe, while its � population undergoes a decrease of 0.22e.

The delocalization index �(A, B) is of particular importance in bridging classi-
cal notions of bonding and quantum mechanics. The role of exchange in determin-
ing the energy is to reduce the electron–electron Coulomb repulsion between a pair
of bonded atoms, and �(A, B) counts the number of pairs contributing to this reduc-
tion, the ‘spin exchange resonance’ of valence bond theory. It thus provides a
means to measure the contribution of the stabilizing exchange energy to bonding
that classical models of bonding attribute to ‘covalency’. The delocalization index
provides a clear indication of the progression of bonding from ‘covalent’ to ‘polar’
to ‘ionic’, through the increasing localization of the electrons within the atomic
basins that parallels the increasing inter-atomic charge transfer. The result is an
accompanying reduction in �(A, B) and a corresponding decrease in the stabiliza-
tion resulting from the exchange of electrons between the two atomic basins. Thus
the inter-atomic exchange energy Vex(A, B) amounts to 7% of the total exchange
energy in the ‘covalent’ C2 molecule where �(C, C)¼ 2.7, but for only 0.4% in the
isoelectronic ‘ionic’ LiF molecule where �(Li, F)¼ 0.18, the ionic limit being char-
acterized by a nearly complete localization of the electrons within each of the atomic
basins. The terms ‘covalency’ and ‘resonance’ are used to account for bonding
without specifying what forces are involved. These terms can now be quantified
by determining the stabilizing contribution of Vex(A, B) to the energy of formation.

The Laplacian of the Density and the Lewis Model

The topology of the density, as revealed in its gradient vector field, provides the
basis for the definition of the elements of molecular structure, but its relatively
simple topology provides no evidence of the Lewis model of electron pairing.
Instead, the Lewis model is recovered in the topology of the second derivative of
the density, its Laplacian distribution r2�(r) [80]. The Laplacian of the density
determines where density is locally concentrated, where r2�(r)<0, and locally
depleted, where r2�(r)>0. Since r2�(r)<0 denotes a concentration of density,
one defines the function L(r)¼�r2�(r)=4, Eq. (4), a maximum in L(r) denoting
a maximum in the concentration of the density, a local charge concentration or CC.
It is well-documented that the topology of L(r) provides a link between models of
localized electrons and a measurable property of the electron density, a link orig-
inally surmised because of the faithful mapping of its local charge concentrations
onto the number, relative size, and angular orientation of the bonded and non-
bonded electron pair domains assumed in Lewis electron pair theory and the
VSEPR model of molecular geometry [81]. This empirical link has since received
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theoretical justification. The conditional same spin density determines the extent to
which the exclusion principle decreases the density of an � electron at some posi-
tion r2 when another � electron is assigned the position r1 [It must be understood
that neither electron is fixed at either of these points, the charge of each being
spread out in space in the manner determined by the spin density ��(r)]. It is readily
demonstrated that in the instance of the Fermi hole being strongly localized about
some point r1, that the conditional same-spin density approaches the single-particle
spin density in regions removed from the region of localization. In such regions, the
sum of the � and � conditional pair densities will approach the total density �(r2)
for a closed-shell system and consequently, the Laplacian of the conditional pair
density will approach the Laplacian of the total density, L(r). Thus the topology of
the Laplacian of the conditional pair density, which determines where electron
pairing is concentrated relative to a given concentration, exhibits a homeomorphism
with the topology of L(r), one that approaches an isomorphic mapping of one field
onto the other [82]. As a consequence of this mapping, the CCs displayed in L(r),
signify the presence of regions of partial pair condensation, that is, of regions with
greater than average probabilities of occupation by a single pair of electrons. This
determination of electron localization is thus model-independent.

Bonded interactions result in the formation of CCs on the surface of the out-
ermost shell of charge concentration of an atom, termed its valence shell charge
concentration (VSCC). Since the integral of L(r) over an atom integrates to zero,
the creation of local concentrations of charge within the VSCC of an atom must
also result in the creation of regions of charge depletion. It is the complementary
mapping of the maxima or ‘lumps’ with the minima or ‘holes’ between the reactant
molecules that define Lewis acid-base reactions [83]. Such Lewis complementarity
is the density embodiment of the ‘‘lock and key’’ analogy proposed by Ehrlich to
account for the high degree of antibody specificity, an idea that resulted in his
introduction of the term ‘receptor’ into the language of physiological chemistry
[84]. Lewis complementarity is evidenced in the display of the Laplacian map
given for Cr(CO)6 in Fig. 5 which shows the alignment of the nonbonded charge

Fig. 5. Envelope maps of the Laplacian of the electron density for the Cr atom in Cr(CO)6 and for

the entire complex; the surface for the Cr atom is for L(r)¼ 5 au while the surfaces for the CO

molecules are for L(r)¼ 0, the surface dividing the regions of charge concentration from those of

charge depletion; note how the pronounced nonbonded charge concentration on each carbon atom is

directed at a ‘hole’ in the Cr envelope in the manner denoting a ‘donor–acceptor’ interaction
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concentrations on the carbons of the ligands with the regions of charge depletion –
the holes – in the Laplacian envelope of the Cr atom, a physical realization of a
donor–acceptor interaction.

The location of the maxima and minima in the Laplacian distribution for a
transition metal atom coincides with the pattern predicted by crystal field theory
[69]. In a d6 complex the eight charge concentrations correspond to the occupied t2g

set and the six faces or regions of charge depletion, correspond to the empty eg set,
Fig. 5. Ligand field theory distinguishes between the t2g and eg orbitals through their
differing overlaps with the ligand orbitals, the former with �, the latter with � and
it yields a modified interpretation of the atomic graph. The eight CCs in the Cr
Laplacian distribution are associated with the t2g orbitals that overlap with the �
orbitals of the ligands, while the six faces or centres of charge depletion are associated
with the eg set that participate in � bonding with the ligands. This association of the
holes in the Laplacian envelope with the � bonding to Cr is in accord with the small
transfer of charge from the ligand � orbitals to Cr, as determined in an analysis of the
orbital contributions to the atomic population on the Cr atom. The analysis shows that
only 0.5 of the four electrons in the eg set reside on the Cr atom, an observation further
strengthening the donor acceptor interpretation of the Cr–C interaction.

Atomic Contributions to Magnetic Properties

The extension of the theory to a molecule in the presence of a magnetic field
requires the determination of the topology of the vector current density, the field
that determines magnetic properties. The current is a vector field and its topology is
more complex than that of the gradient vector field of the electron density. The
existing procedures for calculating the induced first-order current j(1)(r), the field
that determines the second-order response properties such as magnetic susceptibil-
ity, were inadequate when its study was initiated. There is a problem in calculating
j(1)(r) in the choice of a ‘gauge origin’. Magnetic properties are independent of the
choice of gauge and so is the result obtained from an ‘exact calculation’. The
existing methods, all forms of coupled perturbed HF displayed a strong gauge
dependence, so much so, that they were of no use in determining j(1)(r) to the
accuracy required for its topological analysis and marginally useful for calculating
magnetic properties. A simple test of the ‘goodness’ of the calculated current is its
satisfaction of the ‘vanishing of its divergence’, the condition that r � j(1)(r)¼ 0 at
all points in space. If this condition is not satisfied, it implies that electronic charge
is either locally created or destroyed, in the manner described by Schrödinger’s
equation of continuity.

Existing methods based on orbital approaches to the problem using a single
gauge origin or different gauges for each orbital did not satisfy the zero divergence
condition. We decided to follow Schrödinger’s [18] advice and focus on the cal-
culation of the current, since this is the physical field that determines magnetic
properties. There is no gauge problem for an atom in a singlet S state – the nucleus
serving as the ‘natural gauge origin’. Only the diamagnetic contribution survives

and the calculation of j(1)(r) becomes trivial. But we were in possession of a theory
of atoms in molecules! Why not calculate the current one atom at a time putting the
gauge origin at the nucleus and then summing the current and its properties for

844 R. F. W. Bader



each atomic basin, as determined by the physics of an open system? This resulted
in the method of individual gauges for atoms in molecules (IGAIM) [85] an
approach that yielded excellent results for diamagnetic susceptibilities, the diamag-
netic susceptibility 	 (with u¼ cgs ppm) for CO2 was calculated to be �21.8 u
compared to the experimental value of �21.0 u, while a single gauge origin at
electronic centre of mass gave �31.7 u. However, IGAIM results in discontinuities
in the current in the regions of the atomic boundaries. The co-author of these
papers, Dr. T. Keith, had an idea: why not choose a new gauge origin for every
point r in the calculation of j(1)(r), in effect performing a continuous set of gauge
transformations (CSGT) in a manner that maximized their dominance by a partic-
ular nucleus [86]. The result was the removal of the boundary problem and plots
of j(1)(r) that satisfy the vanishing divergence condition to high order. CSGT
enabled the full topological analysis of the induced current [87] and provided its
first accurate displays. The current maps illustrate the spatial interplay between the
induced paramagnetic and diamagnetic currents that account for all of the subtle-
ties of magnetic properties, making possible the accurate description of ‘ring’
currents in aromatic molecules for the first time. The induced current in the CO2

molecule calculated by CSGT is displayed in Fig. 6, a map that gives physical

Fig. 6. A display of the current flow in the CO2 molecule by a magnetic field applied perpendicular

to and out of the plane of the figure obtained from a CSGT calculation; the plot is overlaid with the

intersections of the CjO interatomic surfaces; note how the interatomic surfaces follow the demarca-

tion of the paramagnetic flow-lines of the current (counter-clockwise) within the C basin from the

neighbouring diamagnetic flow-lines in the O basins; the current within the basin of carbon is

dominated by the paramagnetic flow, causing its contribution to 	 to be positive and leading to a

deshielding of the carbon nucleus; the dominant diamagnetic flows in the O basins result in negative

contributions of large magnitude; the current flows, like the density, are very atomic-like in this polar

molecule; thus the contribution to 	 from the flux in current across the atomic boundaries, as

opposed to the basin contributions, accounts for only 8% of the molecular value; in benzene, the

presence of a substantial ring current for a perpendicular field results in a contribution from the flux

in current across the CjC atomic boundaries that accounts for �50% of the molecular value of 	
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expression to the atomic contributions to its magnetic susceptibility and chemical
shielding [66, 67].

CSGT made possible the application of QTAIM to the definition and calcula-
tion of the atomic and group contributions to magnetic susceptibilities [66],
giving theoretical justification to Pascal’s demonstration of the assignment of
additive group increments to the magnetic susceptibility [56]. Indeed the results
are sufficiently accurate that his experimental values were recovered to within
experimental error for a number of groups. To account for the ‘aromatic exalta-
tion’ assigned by Pascal, a carbon atom in benzene should have a magnetic
susceptibility of magnitude j	ðCÞj, greater than that of a correspondingly con-
jugated carbon in a non-aromatic molecule, carbon-2 in cis-butadiene, for exam-
ple. The value of j	ðCÞj in benzene is calculated by QTAIM to exceed that for
C2 in butadiene by 2.5 u. Six times this value, or 15 u, equals precisely the
exaltation assigned to the benzene ring by Pascal and Pacault [88]. The con-
tributions from the H atoms in the two molecules are identical and do not con-
tribute to the exaltation. Further analysis shows that the exaltation is a
consequence of the flux in current through the CjC interatomic surfaces, that
is, from the ring current [66]. Previous attempts to recover additive contributions
to the magnetic susceptibility failed because they started from orbital models,
see for example papers by Pople [89, 90], rather than from the physical field, the
induced current.

The electron delocalization associated with the resonance model is also
invoked to account for aromatic stabilization of the energy. Accordingly, the C
atom in benzene should be more stable than the corresponding atom in butadiene,
and QTAIM shows this to be the case with the difference in their energies equaling
41.9 kJ=mol. The H atom in butadiene possesses a slightly greater population and it
is 14.6 kJ=mol more stable than H in benzene, making the C–H group in benzene
more stable by 27.2 kJ=mol. Benzene is therefore, predicted to be more stable than
six correspondingly conjugated acyclic C–H groups by 163 kJ=mol, compared with
an experimental resonance energy of 151 kJ=mol. QTAIM recovers model quanti-
ties that can be related to experimental measurement.

How to Apply the Theory

The theory is readily applied using the programs AIMPAC [91] or AIM2000
[92] in the analysis of wave functions generated at all levels of theory. The
topological components of the programs define the atomic boundaries, the bond
paths and molecular structure, together with an analysis of the properties at
the bond critical point used in the characterization of bonding. The integra-
tion packages yield most atomic properties of interest, from populations, to mo-
ments, to energies, their kinetic and potential components, to the localization=
delocalization of the electrons. A separate program provides the average proper-
ties of operators integrated over an inter-atomic surface. All of this is possible
without a detailed knowledge of the underlying quantum mechanics – just a
belief in the presence of atoms in molecules. The following section is presented
for those desirous of a fuller understanding of the quantum mechanics of an open
system.
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The Physics of an Open System

Quantum mechanics associates a linear Hermitian operator – a Dirac observable
[52] – with every property of a system and the physics of the system is determined
by the equations of motion for the observables – the theorems of quantum
mechanics. Thus the implementation of Schwinger’s principle to a proper open
system (one bounded by a zero-flux surface) is contained in the variational state-
ment of the Heisenberg equation of motion obtained in terms of a variation in the
Lagrangian for an infinitesimal time interval, Eq. (17) [19].

�L½C;O; t� ¼ ð"=2Þ ði=�hÞhCj½ĤH; ĜG�jCiO
�

þ ccg ð17Þ

This expression of the principle is to be compared with the corresponding ex-
pression for a stationary state obtained from the variation of Schrödinger’s
functional, Eq. (13). The operational form of this statement is obtained by sub-
stitution of the expression for the variation of the Lagrangian that gives the
explicit form for the time rate-of-change of the expectation value of the generator
ĜG, Eq. (18).

ð1=2ÞN
ð
O

dr

ð
dr0@fC�ðĜGðrÞCÞ þ ccg=@t

¼ ð1=2Þfði=�hÞhCj½ĤH; ĜGðrÞ�jCiO þ ccg � ð1=2Þ
þ

dSðrsÞ � fJGðrsÞ þ ccg ð18Þ

The term N
Ð

dr0fC�ðĜGðrÞCÞ þ ccg implies that the operator is averaged over the
coordinates of all the electrons save those denoting the position r, the coordinate
of the electron to be integrated over O. It thus defines the density of the property
G associated with the operator ĜGðrÞ. All open system properties are thus defined
in terms of a real-space density distribution, in the same manner as is the elec-
tron density, Eq. (1). This is direct a consequence of the field-theoretic generator
ĜGðrÞ acting on the coordinates of a single electron.d The physical understanding
of the theory is greatly enhanced through the representation of all properties in
terms of density distributions in real space, particularly those associated with
force and energy. The term on the LHS of Eq. (18) gives the time rate-of-change
of the property G and this is determined by the corresponding average of the
commutator ði=�hÞ½ĤH; ĜG�, as in the physics of a total system. The second term is
unique to an open system, as it describes the flux in the vector current density
JGðrÞ of the generator. If ĜG ¼ N̂N the number operator, then JGðrÞ is the usual
quantum mechanical current that determines the flow of electron density across
the surface of the open system corresponding to the loss or gain of electronic
charge with time. The current JGðrÞ similarly determines the change in the prop-
erty G as a result of its current flux. The physics of some total (closed) system
may be viewed as a special limiting case of Eq. (18) for which the surface term
vanishes.

d In transforming from the field-theoretic expressions to the Schrödinger representation, the operator

ĜGðrÞ is not replaced with a sum of corresponding operators for all N electrons but rather by N times the

operator for a single electron, a crucial and physically essential step

The Quantum Mechanical Basis of Conceptual Chemistry 847



The Atomic Force Theorem

We consider just two cases of generators to illustrate the use of Eq. (18). The time
rate-of-change of momentum is force and setting ĜG ¼ p̂p, an electronic momentum
coordinate, yields the expression for the force acting on the electron density, the
Ehrenfest force theorem [93], Eq. (19).

ð1=2Þ
ð
O

drf@ðJðrÞ þ ccÞ=@tg ¼ ðN=2Þ
ð
O

dr

ð
dr0fC�ð�rrV̂VÞCg

þ
þ

dSðO; rsÞ�
$ðrÞ � nðrÞ ð19Þ

The term on the LHS of Eq. (19) is given by the time derivative of the electronic
current which, being a velocity density, yields an acceleration that when multi-
plied by the mass m, yields the force resulting from the time derivative of the
momentum density. The first term on the RHS, is determined by the commutator
ði=�hÞ½ĤH; p̂p� ¼ �rrV̂V, where V̂V is the total potential energy operator. The operator

�rrV̂V determines the force exerted on the electron at r by the remaining electrons
and by the nuclei, all in fixed positions. By taking the expectation value of this
force in the manner denoted by N

Ð
dr0, that is, by summing over spins and inte-

grating over the coordinates of all electrons save r, one obtains an expression for
~FFðrÞ, the force exerted on an electron at position r by the average distribution of
the remaining electrons and by the rigid nuclear framework – the force exerted on
the electron density. The force density is an example of a physical quantity that
clearly involves two-electron operators, and yet is expressible terms of a real-space
density.

The final term on the RHS of Eq. (19) is the force exerted on the surface of the
atom by the ‘momentum flux density’ that is expressed in terms of the quantum
stress tensor �

$ðrÞ, Eq. (20), introduced by Schrödinger and expressed in terms of
the one-electron density matrix �ð1Þðr; r0Þ,

�
$ðrÞ ¼ ð�h2=4mÞfðrr þr0r0Þ � ðrr0 þ r0rÞg�ð1Þðr; r0Þjr¼r0 ð20Þ

The stress tensor, whose gradient and associated virial, determine the electronic force
and potential energy densities, is a real-space function. It has the dimensions of
pressure, force=unit area (F=L2), or energy density (E=L3). Equation (19) is the equa-
tion of motion for the electron density.

For a molecule in a stationary state, Eq. (19) reduces to Eq. (21) and the force
acting over the basin of the atom is equal and opposite to the force exerted on its
surface.

~FFðOÞ ¼
ð
O

dr~FFðrÞ ¼ �
þ

dSðO; rsÞ�
$ðrÞ � nðrÞ ð21Þ

The Ehrenfest force on the electron density plays a role that must be distin-
guished from the more familiar Feynman force acting on the nuclei. For example, in
the initial approach of two neutral atoms, the Ehrenfest force is repulsive whereas
the Feynman forces are attractive, the former correctly reflecting the initial increase
in the potential energy [94]. The Feynman force eventually vanishes and becomes
repulsive while the Ehrenfest force becomes increasingly attractive, reflecting the
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decrease in the potential energy required by the virial theorem on bonding. The
Feynman force is invoked in situations where the Ehrenfest force is in fact the
operative force, in situations that require the physics of an open system for their
statement and solution. An example is the operation of the atomic force micro-
scope (AFM) [95]. The AFM and the surface under study are two components of a
total system separated by a zero-flux surface. It is the force transmitted from the
tip of the probe to the attached cantilever arm of the AFM whose deflections are
measured as the tip scans the surface of a sample. The Feynman force does not
equal the force ~FF exerted on the cantilever. Instead, it measures the force required
to displace the nucleus � of the atom in the tip of the AFM. One is interested in the
force not just on the nucleus of one atom in the tip of the probe, but rather in the
force ~FF that is exerted on all of the atoms that make up the open system ‘‘probe plus
cantilever’’. This force is determined by the pressure exerted on every element of
the surface separating the tip of the probe from the sample, as given in Eq. (21) in
terms of the surface integral of the stress tensor. It is the Ehrenfest force ~FF that the
cantilever arm exerts on the attached spring, displacing it from its equilibrium
position, the displacement measured in the AFM [95]. The force ~FF is exerted on
a surface determined by the zero-flux interatomic surfaces separating the atoms in
the tip from those in the sample, and thus its response is a consequence of the
atomic form of matter.

The definition of pressure requires the existence of a surface upon which the
pressure is exerted, placing it within the realm of the physics of an open system. A
scaling procedure demonstrates that the expectation value of the pressure-volume
product of a proper open system is proportional to its surface virial, the virial of the
Ehrenfest force exerted on its surface [96]. Thus the thermodynamic pressure is
determined by the virial of the force resulting from the electronic momentum flux
through its zero-flux surface, the force ~FF acting on an open system. The pressure
determined in this manner is a consequence of the mechanics of the interaction
between the open system and its confining walls as opposed to previous treatments
based on the analogy with the classical virial theorem for a contained gas wherein the
pressure-volume product was incorrectly related to the virial of the ‘‘wall forces’’.

These examples demonstrate that the Ehrenfest force is the force acting on and
between macroscopic systems, controlling in addition their relative motion. It is
thus the one that determines the force required to separate two surfaces and the
study of the adhesive properties of surfaces should be directed towards an under-
standing of the Ehrenfest force that is established when two surfaces are brought
into contact. The physics of the Ehrenfest force and its use in the understanding of
chemical bonding is only beginning to be studied in detail [94].

The Atomic Virial Theorem

Setting ĜGðrÞ ¼ r̂r � p̂p in Eq. (18) yields the virial theorem, a theorem that plays the
central role in defining the energy of an open system [19]. Its statement for an open
system is of the same form as that given in Eq. (19) for the Ehrenfest force with the
time rate of change of r̂r � p̂p equated to the expectation value of ði=�hÞ½ĤH; r̂r � p̂p� plus a
surface term denoted by Vs(O). The surface term determines the flux in the asso-
ciated current density that is expressible as r � �ðrÞ, the virial of the surface forces.
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The expectation value of the commutator yields 2T(O)þVb(O), twice the electro-
nic kinetic energy plus the virial of the Ehrenfest force exerted over the basin of the
atom. Expressing by V(O) the total virial for an open system O, the virial theorem
for a stationary state may be stated as Eq. (22).

�2TðOÞ ¼ VðOÞ ¼ VbðOÞ þVsðOÞ ð22Þ
The virials of the Ehrenfest force exerted over the basin and the surface of the atom
with the origin for the coordinate r placed at the nucleus of atom O are given in
Eq. (23).

VbðOÞ ¼�
ð
O

drrO �r � �$ðrÞ ¼
ð
O

drrO �~FFðrÞ VsðOÞ ¼
þ

dSðO;rsÞrO � �
$ðrÞ �nðrÞ

ð23Þ
It is most important to note that the virial, the electronic potential energy, is de-
fined as the viral of the Ehrenfest force. The current in the surface virial has the
dimensions of F=L or surface tension, and Vs(O) is a measure of the surface energy
associated with the interactions of O with its bonded neighbours. An atomic sur-
face S(O) is in general composed of a number of interatomic surfaces, one for each
atom bonded to O. Equation (22) yields the usual statements of the virial theorem
for an atom in a molecule: Ee(O)¼ �T(O) and �2T(O)¼V(O) where the elec-
tronic energy of open system O is defined as Ee(O)¼T(O)þV(O). If the system
is in electrostatic equilibrium with no external forces acting on the nuclei, then
Ee(O)¼E(O), the usual fixed nucleus energy such that the sum of E(O) over all the
atoms in the molecule yields the total molecular energy E.

If one adds the surface virials for two atoms A and B sharing a common surface
S(AjB), then the contribution to the energy of formation of the molecule arising
from the formation of the surface is given by Eq. (24) where ~RRAB is the vector
distance from the nucleus of B to that of A [19].

VsðAjBÞ ¼ ~RRAB �
þ

dSðAjBÞ�$ðrÞ � nAðrÞ ð24Þ

Thus the scalar product of ~RRAB with the Ehrenfest force acting on the surface of
A, equal and opposite to that acting on B, determines the energy of formation of the
surface [19]. If the Ehrenfest force is attractive, drawing atom A towards atom B,
then the energy contribution from surface formation is stabilizing. Like the Ehrenfest
force, the understanding of bonding afforded by this energy change has yet to be
fully explored.

Every theorem may be stated in its differential as well as its integrated form.
The local statement of the virial theorem for example, for a system in a stationary
state, is given by Eq. (25) where V(r) denotes the virial field, the electronic poten-
tial energy density. The sign of the Laplacian of the density determines whether the
kinetic energy density 2G(r)>0 or the potential energy density V(r)<0 dominates
their virial ratio at a particular point in space making it a useful quantity in the
classification of chemical bonding. Since the integral of the Laplacian of the den-
sity over an open system O vanishes, integration of Eq. (25) clearly yields the virial
theorem for an atom in a molecule, Eq. (22). The virial field, since it is expressible
in terms of the stress tensor, is a representation of the electronic potential energy
density in real space, determining the interactions, attractive and repulsive between
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all of the particles in a molecule. Its topology is homeomorphic with that of the
density and thus every bond path is mirrored by a virial path, a line along which
the potential energy density is maximally stabilizing [97]. All theorems hold in
the presence of an electromagnetic field. In the presence of a magnetic field for ex-
ample, the surface integral in the virial theorem includes a contribution from the
magnetic pressures acting on the atomic surface [19].

ð�h2=4mÞr2�ðrÞ ¼ 2GðrÞ � r � r� �$ðrÞ þ r � ðr � �$ðrÞÞ ¼ 2GðrÞ þVðrÞ ð25Þ
Scheme 1 lists atomic theorems for a number of the most important generators

ĜG [98]. The use of these theorems extends beyond the asking of chemical questions

Scheme 1
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of bonding, structure, and reactivity. They apply to all questions regarding the
properties of matter at the atomic level. The text has drawn attention to specific
problems that require the use of the physics of an open system for their under-
standing and interpretation, such as the atomic force microscope [95] and the
quantum definition of pressure [96]. The atomic current theorem that is obtained
by setting ĜG ¼ r, an electronic position coordinate, plays an essential role in the
atomic partitioning of the diamagnetic susceptibility by relating the atomic current
induced within an atom to the flux in the current through its surface, an essential
contribution to the atomic description of magnetic properties [66]. The atomic
force is the equation of motion for an open system. It is capable of describing
the motion of an adsorbed atom on the surface of a substrate or the forces required
for the manipulation of individual atoms or molecules thereby providing a basis for
nanotechnology. The physical understanding obtainable from the use of these the-
orems is only beginning to be explored.

Conclusion

The theory developed in this paper can be derived independently by any chemist
familiar with the observable topology of the electron density and knowledgeable in
physics. It is thus a scientific theory, its sole input being the information contained
in the state vector and its predictions being verifiable by experiment.

Note Added in Proof

A paper entitled ‘‘Properties of atoms in molecules: Caged atoms and the Ehrenfest
force’’ is to appear in J. Chem. Theory Compt., in May, 2005 by R. F. W. Bader and
De-Chai Fang, that introduces the Ehrenfest force into the discussion of chemical
bonding.
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